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PREFACE

The Mathematical Assoclation of America has for many years been interested in
the use of films and television in the teaching of mathematjes. For example, a session
on instruction by television or {films was a feature of the 1956 annual meeting, é demon.
stration lecture on closed circuit television wasg given at the 1957 summer meeting, and
the June -July 1958 issue of the AMERICAN MATHEMATICAL MONTHLY (the official
journal of the MAA) was devoted to the use of films and television in mathematics edu-
cation. :

Finally in 1958, a grant from the Natinpa] Science Foundation enabled the Associa.
tion's Committee on Production of Films to produce certain experimental films with
accompanying manuals., Among the films produced by this Commitiee is “Mathematical
Induction” (2 reels) by Professor Leon Henkin of the University of California, Berkeley,
This booklet is written as a supplement to the film. 1t contains an approximation to the
words spoken in the f ilm, an appendix to amplify the treatment of the subject, and a
*umber of problems,
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Part I

A. In mathematics we deal with many kinds of numbers. As schoolchildren we first
learn about the whole numbers, then about fractions, later about negative numbers, and
still later about the so-called “irrational” numbers, such as 7 and V2, and even “im-
aginary” numbers like 3, whose square is negative. As a matter of fact there are still
other number systems which you may study if you pursue your work in mathematics.
But the topic of mathematical induction, which we shall discuss today, concerns the
simplest kind of numbers, the whole numbers (or positive integers), 1, 2, 3, etc.

If we look at the set of all positive integers there is one striking fact which distin-
guishes it sharply from the sets which we ordinarily encounter in the daily work of ex-
perience —namely, there are infinilely many elements in this set! "The set of people in
a room, the set of eggs in a market, even the set of leaves in a forest, are all finite
sets. But the set of positive integers is infinite.

The way in which we can most readily see this difference is by imagining that we
arrange the elements of each set in a line. If we deal with the people in a room, for .
example, we obtain a first, a second, ..., and finally a last person in the line. Simi.
larly with the eggs in a2 market, say. But when we line up the positive integers — ar-
ranging them, for instance, in order of increasing size — we see that there is no last
number ! No matter how far down the line we go, we can always add 1 to the number
we {ind there and obtain a new number which comes next in line.

Now the fact that there are infinitely many positive integers causes a special kind
-of problem for us mathematicians because¢ of the fact that we are often interested in
discovering things which are true of all positive integers, To understand the nature of
this difficulty, let us contrast such a problem with that of showing that something is
true of all people in this room,

Suppose, for example, that we are interested in some property of people, such as
the property of being more than 5 feel tall. And suppose we wish to determnine whether
every person in this rooun has this property. One way in which we could proceed would
be to line up all of the people in the room and then to go down the line measuring cach
one. If we come to a person measuring 5 feet or less, then we would know that not
every pevson in the room has the specified property. On the other hand, if we corie to
the end of the line withou! having found a person measuring 5 feel or less, then we
would know thit indeed every person in the room does have this proper ly. Notice how
important it is for this procedure that we finally come to the end of the line.

By contrast, suppose we are interested in some properiy of the positive integers —
say the property of being cqual to a sum of 4 ov fewer squarves of positive iniegers,
And suppose we wish to determine whether every positive integer has this property.
Again, we could proceed by lining up all of the positive integers — in fact, thesc num -
bers come to us already lined up in a “natural” order, 1,2,3,4,... —and then we could
go down the line testing each one to see whether it has the property of being equal to a
sum of 4 or fewer squares. Let us actually begin this test:

1 =1 9 = F

2 =1 4+ 12 - 10 = 3% + 1°

3 =141+ 1 ® /3% 4 1° 412

4 =2 12 = 2° + 2° + 2°

8 = 2yt 13 =3+ &

6 = 2° 4+ 1% 4+ 1° 14 = 3% 4+ 2% + 17
o= 2 a1F 1 5 9° 15 = 32+ 2° + 12 + 1°
-8 = 2% 4+ 2° 16 = 4°



So far, we see that each number tested has the desired property. If we should come,
presently, to a number which is nof equal to a sum of 4 or fewer squares of whole
numbers, then we would say that not every positive integer has the specified property.
This is entirely comparable to our procedure in measuring the people in the room. But
suppose that each time we test a number we find that it is a sum of 4 or fewer squares
of whole numbers. What then?

In our previous example, where we measured people, we were able to reach a con-
clusion about every person in the room when we got to the end of the line. But in the
present case of positive integers, we know that the line has no end. That is, there is no
last number. Thus it could happen that we test numbers one after another for 40 days
and 40 nights — or for 40 centuries, for that matter, if we enlist the cpoperation of our
descendants —and it could turn out that each number tested is equal to a sum of 4 or
fewer squares of whole numbers; and yet we could not conclude that every number has
this property.

Because the line-them-up-and-test-each-one method will not work when we are
seeking to establish some general proposition about all positive integers, the mathe -
matician has had to develop other methods to handle such problems. And of these, per-
haps the most fundamental is based upon mathematical induction. Before we explain
this, however, we ought perhaps to settle in your mind the question we have raised
above about sums of squares.

As a matter of fact, every positive integer does have the property of being equal to
a sum of 4 or fewer squares of whole numbers. The question was considered by the
early Greek mathematicians, and challenged many other well known mathematicians
down through the centuries. A proof was finally given by the French mathematician
Lagrange, in 1772. The proof is too long and complicated for us to give it here, but
those of you who go on to study that branch of mathematics called the theory of mumbers
will see the proof, and you will find that mathematical induction plays an important role
in it.

B. Well, we have mentioned mathematical induction quite a few times by now — we had
better say exactly what it is. The modern mathematician prefers to formulate il as a
proposition about sefs of positive integers. We have already encountered one cuch set,
namely, the set (let us call it N) of all the pocitive integers, {1,2,3,...}. It is easy to
make up other such sets. For example, we could consider the set N’ of all even posi-
tive integers, {2,4,6,8, ...}, or the set N” of all positive integers grrealer than 5,
{6,7,8,9, ...}, both of which are infinite sets (having no last elements); or we could
consider the set M of all positive integers less than 16, {1,2,3,..., 14,15}, or the set
M’ consisting of just the numbers 3, 22, and 185, {3,22,185}, both of which are finite
sets.

Among all posgible sets of numbers we shall be especially concerned with those
which have the following property: if we pick any number from the sef, and add 1 to it,
the resulling number is also in the sel, In other words: Whenever a mumber n is in
the set, then n+ 1 is in the set. The mathematician says that such 2 set is closed
under the addition of 1. In order to have a shorter term, we shall call such a set in-
duclive.

Let us examine the sets N, N’, N”, M, and M’ considered above, to see which oncs
are inductive. Certainly N is, because if we pick any positive integer and add 1 to it
the result is again a positive integer. Equally certainly N’ is nof induclive, because if
we pick one of its elements (an even number) and add 1 to it we get an odd number —
which is not one of the elements in N’. The set N” is inductive, because if we pick a
positive integer greater than 5 and add 1 to it, the resulting number, being even
greater than the first one, must surely be greater than 5 (and hence will be in N”).

Coming to our two examples of finite sets, we might say that the set M is almost
inductive. For if we happen to pick the number 4 from M, say, —or if we pick 7,
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or 12, or any of the elements of M except 15 —and add 1 to it, the resulting number
s also in M. But M is not inductive, because if we pick 15 from it and add 1, the re-
sulting number, 16, is not in M. And for a set to be inductive, it must be true that no
matter which number we pick from it, when we add 1 the resulting number is in the
set... The set M’, of course, is obviously not inductive. Actually, it can be shown that
no finite set can be inductive.

In terms pf the concept of an inductive set we can give a concise formulation of the
principle of -

Mathematical Induction. If G is any set of positive integers, and if we find that

(i) The number 1 is in G, and
(i) G is inductive,
then: Every positive integer must be in G.

Well, there you have a statement of mathematical induction. But in order to appre-
ciate its meaning it is necessary to discuss two questions which naturally occur in con-
nection with this assertion. First, how do we know it is true? How do we know that
every set of positive integers which satisfies the hypotheses (i) and (ii} will contain
every positive integer? And second, even if it is true, why are we concerned with such
a remote -sounding proposition? What can we do with it?

*® & * * L

-

C. Let us begin by tackling the first of these questions. Suppose, thén, that some one
hands us a set G of positive integers and we find somehow that

(i) The number 1 is in G, and

(ii) G is inductive.

How can we convince ourselves that every positive integer must be in G?

We may begin reasoning as follows. We know, of course, that the number 1 is
in G, because this is our hypothesis (i). But we can also show that 2 must be in G,
For let us pick the number 1, which we already know to be in G, and add 1 to it.

Smce, by (ii}, G is inductive, we see that the resulting number, 2, must also be in G —
for this is what the word “inductive” means!

Now that 2 is known to be in G we may pick ii, add 1 to it, and thus (by another
application of hypothesis (ii)) we can conclude that 3 is‘in G. And then, by repeating
this procedure, we can establish that 4 is in G. Clearly, continuing in this way, we
can show in turn that each positive integer is in G,

I think this is quite a convincing avgument, and most people will be persuaded Ly it
that the statement of mathematical induction is indeed correct. And yet, by the stand-
ards of logical rigor which prevail in modern mathematics, we cannot accept thls argu-
ment as constiluting a really satisfactory proof of mathematical induction. Can you sce
what the dUfficulty is?

The trouble, of course, is in the last line of the stated argument. We have certainly
showed in full detail that, under the assumption that G is a set satisfying (i) and (ii),
the numbers 1, 2, and 3 must be in G. But then we end up by appealing to the good na-
ture of the reader: “You see, dan’t you,” we say to him, “how I can then proceed to
show that evcry positive integer is in G?” If he hesitates we might add “Surely you
see thal 7" with the intention of suggesting that he would Le rather stupid if he did not!
And yet, he has a perfect right to doubt, For when we state that “we can show in turn
that each positive integer is in G” he can justifiably reply: “You say you can show this
~—all right, do sol” This response, I think, makes clear the shortcomings of the al-
leged demonstration.

I'want to return to the question of a precise proof of mathematical induction at a
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later point. But for the moment, let me suppose that our intuitive argument has at
least convinced you that this proposition is likely to be true, and let us pass to the
second of the questions raised above, inquiring how, if we assume the correctness of
mathematical induction, we can use this proposition to establish general statements
about all positive integers.

o * » * *® L

D. The first example I should like to consider concerns the notion of divisibility. We
say that a positive integer a 1s divisible by another such number, b if the result of di-
viding b into a leaves no remainder; that is, if g— is itself some positive integer,
say q. An equivalent way of expressing this is to state that @ is divisible by b just in
case a = b - ¢ for some positive integer g. Thus, for example, 12 is divisible by 2,
or by 3, or by 12, but not by 5 or by 9.

Now the fact which I wish to demonstrate for you is this; If I raise 5 to the power
2k —where k is any positive integer . and subtract 1, the result will be divisible by 24.
In other words, I assert the following general statement about positive integers:

For every positive integer &,
(+) & w e :
is divigib!e by 24. \

Certainly this is not obvious, so let us begin by checking the assertion for a few
values of %.

For # =1,5°%% .1 =6%_1=25.1= 324 and certalnly there is no doubt that
that is divisible by 24. 7

For k = 2 we find 52 _ 1 = 5% . 1 = 625 . 1 = 624. Since it happens that 624
= 26 x 24, we see that 5% _ 1 is indeed divisible by 24 when k = 2. But already the
arithmetic involved in testing special values of % is beginning to get difficult. In any
case, because of the infinitude of positive integers, we know that a general statement
about them can never be established by testing the integers one at a time. So let us see
how we can employ mathematical induction to demonstrate our assertion.

Since mathematical induction is a proposition about sets of positive integers, we be-
gin any application of this proposition by selecting a particular set of positive integers
which Is appropriate to our problem. In the case of our assertion (*), it is natural to
consider lhe set G of those positive integers k for which 5% - ] is, in fact, divisible
by 24.

Once the set G has been chosen in this way, we see that our previous observalions,
to the effect that 5% ' . 1 and 5% * 2 . 1 are divisible by 24, can be expressed by
saying that the numbers 1 and 2 ave in the set G.

The next thing we shall show about the set G is that it is inductive. What will this
accomplish? Well, knowing that (i) the number 1 is in this set G, and (ii) this set G is
inductive, we see by reference to the statement of mathematical induction, that we can
apply that proposition to conclude that every positive inleger is in this sel G. But ac-
cording to the way in which we defined G, we put into G only those numbers k for
which 52% _ 1 is divisible by 24. Hence we will have established that 52 _ 1 s di-
visible by 24 for every positive integer k, and this is precisely our assertion (x),

Thus a complete demonstration of (%) will be at hand if we can show that our set G
Is Inductive. To do this, we begin by picking any number from G —let us call it j —
and then we wish to demonstrate that if we add 1 to it the resulting number, j + 1,
must #lso be in the set G, .

Now since j was picked from G, we know that 5% . 1 must be divisible by 24.
That 1s, there is a positive integer ¢ such that



5 _1=24q,

so that
(1) 5 = 24¢ + 1.

Let us use this equation to obtain a value for 52(i+1) | we find that
) 5z(j+1) e 5=j+z
s 53j < &Y
= (24¢ + 1)(25) by equation (1)
= (24q - 25) + 25 .

Subtracting 1 from both sides of the resulting equation we see that

5it) |1 = (24¢ - 25) + 24
=24 .(g-26+1),

and this shows that _
530%Y) 1 is divisible by 24.

Since the set G contains those numbers & for which 5% _ 1 s divisible by 24, we see
that we have established that the number j + 1 is in the set G.

But what was j to begin with? Looking back we see that j was any number picked
from G. Thus we have shown that no matter what number we pick from G, when we
add 1 {o it the resulling number i< also in G, That is, we have shown that G is induc-
tive. And as we have seen before, this allows us to apply mathematical induction to ob-
tain a proof of our general statement (*).

Well, that is about all we have time for in'this first lecture. We have observed the
infinitude of positive integers and the difficulty which this puses when we seek to esiab-
lish a general statement about all positive integers; we have discussed a certain kind of
set of positive integers called inductive, and have seen how to formulate mathematica
induction in terms of induetive sets; we have seen an intuitive argument sketched which
purports to establish the truth of mathematical induction, but have observed the short-
comings of this argument; and finally, we have seen an application of mathematical in-
duction to establish a general statement about divisibility of posilive integers. In our
next lecture I would like to illustrate the possibilities of applying mathematical induc-
tion by an illustration of another kind, and then ) want to return to the problem of giv-
ing a rigorous demonstration of this proposition.



Part T

A; In the previous lecture we formulated the principle of mathematical induction as a
ﬁ'uemcnt about sets of positive Integers. You recall that a set G of positive Integers

duction is us follows.

U G is any set of posttive inlegers concerming which we find that,
(1) The number 1 is in G, and

(i) G is inductive,

then every positive integer must be in this set G.

I want to bagin this lecture by indicating an application of mathematical induction (o
a problem of addition; and I should like to introduce this problem by relating a little

story,

In the year 1787, about the time that our American constitution was being formed, a

ten year old hoy named Karl Friedrich Gauss was attending & small schoo) in his native | "

country, Germany, One day, to keep the pupils busy while doing some work of his own,
the schoolmasier assigned to his class the problem of wdding rll of the positive integers
from 1 through 100, In those days schoolboye did not have paper, but each one carriad

fairly confident that his students would be kept busy for a good hour or so with this tagk,
Much to the teacher’s surprise, young Gauss brought up his slate alter only & minute

or two, and as was the custom, he laid it on the teacher’s desk, On his alate he had

written his answer to the problem; BOBD, When, at the end of An hour, the othey gludents

had brought up thejr Blates,
solution. This incident g0 i

the teacher found that only Gauss had obtained the earreet
mpressed him that he began to tnke a specia] interest in his

star pupil, buying mathemiticul books for the young boy with his OWA money, Before

Gauss was out of his 'teens
within a few yeurs he wag [
today many mathematieiansg
maticiang of all timeg,
how let us see how |t s

he had made some remarkable mathematioal diseoveries;
enerilly recognized np Europe’s loading mathematieian; and
conglder him to be among the throe or foyr Hreatest mathe -

posaible to obtain the sum of all of the numbers from 1 to

100 without actually carrying out the lahorious additions, Actually, there 18 a very

simple niethod which works

equally well to give the sup of wll numbers from 1 throvgh

k, where b may be any positive lveger,
Let us vse the symbol A, for this sum) that is, we let

(1) Ay

Clearly if the same numbey
That is, we also have

Gl*'ﬂ*?*:..‘#(ﬁal)*lﬁ

& are added in reverse erder the result will be the game,

(2) Ag‘k*(}e-l)#(hwﬂ)#n-*ﬂtl'

Now lot us combine equation (1) and (2) by addition, On the left side of the resulting
equation wo gel, of course, Ak + Ak, Onthe right side let us earyy ewt the addition



by first forming the sum of the first terms of equations (1) and (2), then adding in the
sum of the second terms of equations (1) and (2), etc. The result is:

B) Ag + A =[1+h)+ (24 (k1)) +[3+ (B-2)] # ...+ [(B-1) + 2) + [k +1].

Clearly each term In brackets has the value % + 1, and altogether there are & such
terms. Hence we get

() ‘ 24, = k- (k+1),
g0 that
(5) Ak -.é_'_z‘.’ﬂ? .

I, now, we take the case 4 = 100, we see by equalion (5) that A ,, (whichis 1 + 2 + 3
+ ...+ 89 + 100) has the value .!.9_9_5_(9_11 = B0 + (101) = BOSO . which was exactly

the answer given by Gauss,

It 1s also possible to establish that equation (5) holds for every po:itive Integer k
by mathewatical induetion, but instead of showing this we will Illustrate its vse in
solving a closely related problem. Namely, Instead of neking for the sum of the first &
positive integers, suppose we see if we can find the sum of thely cubes,

Let us introduce the symbol Cy for this sum. That ls, we set

Cu=1®+2° + 3% 4 ., » (h1) +4°,

where k may be any positive integer, And we seek & formula which will permit us to
evaluate Cy without having to earry out all of the & additlons which ere indicated in its
defiuition, How shall we begin to look for such a formula?

Let us begin by constructing & table showlng, for each whole number A from 1 up
to G, what the value of the sum of the first & eubss 18, Ouy table will look like this:

Ox = sum of
B 3 first b cubes
N [ o
2 c =8 9
3 an 36
4 64 100
5 126 226
6 216 441

Heve the entry 36 in the last column, for example, 1 obtalned by sdding the entrles
1,8 and 27 from the second column,

Now —do you notiee saything epecial about the nunibers {n the last ealumn? I'm
sure that everyone will recognize that the first four entyles are squares of whole nym -
bers, Probably most of you will recognise that the fifth entry, 835, is ulso a square,
B?";f of yeu may even realize that the last entry, 441, s & square too .= it {8 the square
ol 41,

Well, do you suppose that if we continued the censtruetion of eur table beyond six
lines we would eentinue to get squares i the third eelumn? I & = 6 we haye scen that
Ci 18 @ square; In partieular, €, = 1, @, = 8¢, G, = 6% 6, = 10°, €, = 15°, C, = 217,
In arder to try to find A formula whieh would express k Interms ef k let us pro-
vide a fourth solumn for our table tn whish we enter the square roots of the entries In
the third celumn, :

¥



Cy ™ sumof

k K’ first k& cubes VCy
MHM

1 1 1 1

2 8 P 3

3 27 36 8

4 64 100 10
& & 125 225 15

6 216 441 21

Do you notice any regularity among the numbers of the last column? Let us look at
the differences between successive entries of that column;

VCx Difference
1
2
3
3
6
4
10
5
15
6 =
21

Well, there certainly ie a regularity!l From these differences it appears that we
can express each of the numbers in the column V€, ae a sum:

Ve,

1

3=1+3

6 = (1+2) + 3

10 = (142+3) + 4
15 = (1+2+3+4) + B
21 = (1+2+3+4+5) + 6

In other words, at least for the eix lines of our table, we find that Y Cy is Ay, the sum

of the first & positive integers! Since we already know that Ag = #_.-_-__2(_l_a_+i) for every

positive irteger , we can say that at least for &k = 6, we have Cy = [’L_z(f"il!l" And
it is natural to wonder whether this formula holds for every whole number k. We shall
use mathenatical induction to show that the answer |8 affirmative,

To this end we form a set G of whole numbers by putling into G just those number #
for which it is true that Cyx = ["‘-’-—5——%’3‘3)]’. At the moment we know (from our table) that

the yumbers 1, 2, 3, 4, 5, and 6 are in this set G, And our question is equivalent to
asking whether every positive integer is in G.
Now let us pick any number from @ =gall It j, Bince j was picked from G, we

know that C; = [1—;-29—"-1—’]2. What ean we say about Cj,, 7 Well, since Cj ls the sum

of the first j cubes, ;= 1° + 2° + ., # (j=1)' + j', and since Cj,, Is the sum of
the first j + 1 cubes, Ciy, =17 + 2" # ,,, + (J=1)" + j* + (j+1)*. Clearly we have
Cijuy * £y ¢ (j+1)*, so that

8



(_':jﬂ - [-’_}f"’_l) P e (441)?

= (7+1)? [%,-b (J+1)] = (4+1)? [&7‘2.1]
= (f+1)! [_(lif‘gli] = [(J_*f.;-’_‘g_)p,

Recalling that we put Into G those numbers 4 for which ¢, = [5—'#"‘—”]’, we gee that
the formula CJ " [Qﬂ)z(jf—z—) ', which has just been derived, guarantees that § + | (g

In G. But what was § to begin with? It was a number selected (n an arbitrary way

from G! That is, we have shown that whenever a positive Integer / s in G, then also

J+1willbein@. In other words, we have established that our get G is {nductive.
Bince we have previously observed that the numher 1 ig in G, this new obeervation

allows us to apply the principle of mathematiea] induction Immediately to conelude that

sverY posilive integer is in G. That is, for every positive integer & we have Ck

i [k b {&i!j.

2

——

+ Thus we have established a fornnia which enables us quickly te find

the sum of the first # cubes ~ where 2 {8 any positive Integer. In particular, we have
found that this gum {8 equal to the 8quare of the sum of the firat & positive Integers,
Using the answer supplied ly Gauss to hig teacher’s problem we can thys #ay that the
sum of the firat 100 cubes ls (5050)* = 25,502,500,

* L] * L L]

. I'think we will not have time for further applications of mathemating) duntion, and
F-u,ls;h utw s return te the quosticn of 1h- villdity of this nrinciple, Yoy reenl) that in
the previcug leeturs we Fave Lo argpument to Indicate Inan intuitiyve way that the atatn.
mant of mathamatical indvetion CXpresses w true fact abapt relg of pogitive integers;
but we Indicated that thig argument could not be considered RG A satisfactory proot be.
cavae, afler showing In detail that the numbers 1, 2, and 3 were Inn set 6, the argu.
ment ended with words lke, “Well, you can gee that in the same way we could show that
every positive Integer ie in Q"

Lat us start apain, now, with an arbltrary get ¢ of positive integers concerning
which we suppose that (i) the number 1 ig In G, and (i) ¢ is induetive, and let us seo
i we can produre g really sound proof that cvery positlve Integer must bo in @G,

This time wa will bage our argument upon a lnrieal dovieas known ns proaf by rag.
trediction, That 18, we begin Ly assuming that in fact thare are positive Intepers whiel
rre fof In G, and we ghall show that this assumption lends to eontrediction — and
henee thet It must b rejected,

Firea we arn arsuming that there arn vositive integers which are net in G, lel us
chonze the smallest of these and call it 4. Of courge q 71, ulnce 2 15 not In 6 while
! 19dn @ (by hypothesis (i)). Recause 7 is a pogritive integer different from 1, there
must be another positive Inteper, say f, which comeg just before g, 8o that p + ] = q,
OF course thie means that P is smaller than ¢ and ginre ¢ was the emAallest pf the
numbars which are nof in G, it follows that pis in G,

Now let us use oyr hypothesis (11), to the vflect that G g incluctive, Let ug plek the
number f which we have just shown to be in G, and add 1 to it, Bipee 6 17 inductive
the resulting number, A4 1 must also be inG, Butp + 1 = g S0 qisin @,

On the other hand, we picked q to be the smallest of the positive integersg whieh are
nol in G, So we have, indeed, arrived at a contradiction. Sinpe this contradietion arose
from our assumption that there are positive integers which are noatl in @G, dhe BESUmp-
tlon.mugt be incoryect, After all, there are no positive integers whieh are net In @. In
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other words, every positive integer is in G. And this concludes our proof of mathe-
matical induction,

Certainly this argument differs in character from the earller one we gave, because
it does not end by stating that we could do something which in fact we do not do. And
yet, if we look carefully at the new argument, we may also begin to have doubts about
certain of its points, For example, even If we assume that there are positive integers
which are not in G, how do we know that there is a smalles! one among them? After
all, in the set of all odd positive integers, for example, we know there is no largest
number; perhaps this other set, which enters into our proof, has no smallest number?

The question of what constitutes a fully satisfactory proof is a subtle one, and has °
itself been made the subject of extended mathematical investigation. But perhaps we
can try to indicate in a few words here the principal form of solution which has been
evolved by modern mathematicians, :

In any proof whatever, we arrive at a conclusion by starting from certain state-
ments which are taken for granted, and proceeding according to certain rules or laws
of logic. Of course the statements taken for granted in a given proof may be called into
question, and we may seek to give proofs for these. But these proofs in turn will start
from other assumptions, and Lf we then obtain proofs of these, still other assumptions
will be brought in, The frank recognition that any deductive theory must begin with
some statements which we do nof attempt to prove leads to the concept of an axiomatic
theory.

I am sure you have all heard of the Greek mathematiclan Euclid, and of how he for.
mulated an axiomatie theory of geometry, Not so well known 18 the fact that during the
last eighty years or so, mathematicians have axiomatized many other parts of mathe-
matics. In particular, an axiomatic theory of positive integers was first proposed by
an Italian mathematician, Gluseppe Peano, in the last decade of the nineteenth century.

In Peano’s theory the statement of mathematical induction was itself taken as an
axiom, and 80 of course it makes no sense to ask for a proof of this statement in such a
theory. On the other hand, later workers suggested a variety of other axiom systems
for the theory of positive integers. Among the axioms which one often finds in these
systems is the following statement (often referred to as a well-orderiy principle):

If G is any set which contains onc or move positive integers, then uniong all of the
positive integers occurving in G lhere must be one which is smaller than cach of e
ofhers. In systems which include such an axiom, a proof of the principle of mathemati-
cal induction can be given along the lines of the proof sketched above. (On the other
hand, in systems like that of Peano, where mathematical {nduction is taken as one of
the axioms, the well-ordering principle can be proved as a theorem,)

* L] L » *

C. This ends the mathematical content of my talk, but I should like to add a word con-
cerning the significance of the principle of mathematical Induction,

“Of what real good is thig principle anyhow?” you may ask, Of coursc one answer
is that it can be used to establish many general statements about positive Integers, as
you have seen in two deiatled examples above, But perhaps you are not really inter-
ested in general statements about positive integers, You have heard that mathematics
can be used to build bridges or gulde rockets, and you may wonder if mathematical in-
duction can be applied to problems in such domains,

As a matter of fuct there are very few direct applications of mathematical induction
to what we might call “engineering problemsa”; most of these arice in connection with
computations in the elementary theory of probability, But in spite of thig, mathemati-
cal induction is really of great importance to engincering, for it enters tnto the proofs
of a great many of the most fundamental theorems in the branch of mathematics we call
analysls —and these theorems are used over and over by engincers.

-And yet, to me, the true significance of mathematical {nduction does not lie in its
importance for practical applications. Rather I gee it as a creation of man’s intellect
which symbolizes his ability to transcend the eonfines of his environment.
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After all, wherever we go, wherever we look in our unlverse, we see only finite
3ets: The e gs in 2 marlket, the people in a room, the leaves in a forest, the stars in a
galaxy —all of these are finite. But somehow man has been able to sead lis imagina-
tlon soaring bcyond anything he has ever seen, to create the goncept af an infinite sct.
And mathematical induction is his most basic tool of discovery in this abstract and dis-
tant realm.

Te m=2, this conception gives to mathematical study a sense of excilemeng, And I
hope that sume of you will carry your study of mathematics to the point wherg you too
can expesience the unigue excitement which mathematics affords to its de vilgd studoents.

11



APPENDIX

I wish here to deal briefly with a few points closely related to the material of the
talk, which could not be included in the talk itself for lack of time.

L L] L] " L]

A, The fact that 5°% . 1 {5 divisible by 24 for every positive integer & is simply &
special case of the fact that for any positive integers x, ¥, aq'd kU x>y then xk . yk
is divisible by ¥ - y; to see this, we have only to take x = § (e, x = 28), and y = 1,
The more general law can be established by mathematical nduction in quite thg same
way as we treated tho speclal case; this is & very simple exercise which the reoader
should try,

It is :atural to wonder whether there {s a counterpart to the general law glven
above, statlug that xk + yk ig divisible by » + ¥. Howaver, it {8 eusy to {ind examples
of positive lutegers where this Is not so. For example, If we take x = 2, ym 1, b=,
it 18 evident that 2° + 1, or 5, {s not divisible by 2 + 1, or 3. On the other hand, we
can sliow that if x and y are an{ positive Integers whatever, and if 4 ‘g any odd posi.
tive intoger, then Indeed % + y* is divisible by x + y, And this, (oo, can be ostal-
lighed by mathematical induetion,

At firet slgli it inay seem strange that mathematical induction, which 18 designed te
prove gencral stutements ahout all positive integors, is hore uged to prove a theorem
which holds only for some positive integers, namoly, the odd ones. However, it s a
simple mitter to formuolate our resull so that it l]nb the form of & general statemunt:
For all postiive integevs x, y, and §, x™™% + y¥™V ig divisible by % 4 9. Yihink yeu
will find the problew of proving this fact by mathematica) Induetion u lUttle more chal.
lenging than the previous exorcise, but with a little work many of you should ha ahle te
carry It theough, '

$ ] L ] L ] L ]

B, Letting

Ak"l*’a*s*o-n*h,
and

Cryo1+2°43%4 ,,, 4+ 0
we have derived the formulas

Ay ® .’i.;ﬁi&ill and C) = [-E_'!gity."",

It {8 natural to wondor whether wo can obtain & aimilar formula for

Be=1"+ 2"+ 8%+ .., 4 A",

In partieular, our expression for Ay ean be written s & polynomlal of degree B, namely
' %&-’ + %fa; #nd our expresslen for €, 1s the pelynomial %&‘ + %k‘ * %{r‘ of degree 4,
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Can we express B, as a polynomial in k& of degree 37 That is, can we {ind numbers
a,,a,,a, a, such that

(») B, =ak +a k' +ak+a,

for all positive integers #? Of course, based upon our experience with 4, and Cy we
have to expcct the numbers a,, a3, @,, G, to be rational numbers (fractions) rather
than merely integers.

As we shall see, mathematical induction can be used not only to supply an affirma.
tive reply to this question, but also to furnish specific values of a,, a,, q,, and a,.

To do this, let us seek to establish that the equation (+) holds for all positive inte-
gors A. How do we go about it? We begin by considering the set G of those positive
integors & for which the equation («) does hold. We then seek to show that (1) the num.
ber 1 is in thie set G, and (1i) G is inductive. If we can do this, then we can apply
mathematical induction to conclude that every positive integer # must be in the set G,
and this will show that the equation () holds for every such &, .

Now for the number 1 to be in the set G we must have B, = a,1’ + a,1' + 4, 1
+ @, according to our definition of G. On the other hand, B, s defined to be simply
1", or 1. Thus we see that condition

() The number 1 isin G
will be satistled, provided the numbers a,, a4, a,, and a, are selected so that

M @+ a,+ a, +ay= 1,

Now let ue turn to condition (11). Weo wish to show that G is inductive. For this
purposo we bogin by selecting an arbitrary number —call it j —from the sct G, so thal

(1) Bj'a.j.+a‘j'+alj+a°.

And we would lll.e to show that when we add 1 to this number the resulting number,
J + 1, must also be In G, That 18, we wish to show that

(1) Bipy * ay (141)° + gy (+1)" + 4, (J41) + a,.
But wince Byw 1%+ 2 4.4 4" andsineo By, ¢ 1%+ 2400t (141)" wo noo that
UV) ij.; ol B.' + (j"'l)l '

By eombining the aquations (II), (UI), and (IV), we see that the condition

(if) ¢ is inductive ;
will hold providing we can be sure that the numbers @,4,,a,,and a, aro such that
the cquation
(v) ay(1+1) v (1) +a,(j41)ra,m (0, f +a, 1 +ad+a,) + (j+1)*
holds, By expanding each side of this equation and equating coefflelents of like powers
of J we reach the following conelusion: The conditivn

(i1) G i inductive
will held, providing that the numbers fiy, @y, 4,,8nd a, satisfy the system of equatiens

c 3, 48y 5y +1
(V1) da,+8a, +a,=a,+48
B +dg+a vaygTay+l,
13



Thus, to insure that both conditions (1) and (ii) holds, and hence (by mathematical in-
duction) that equation (*) holds for all positive integers k, it is sufficlent to choose the
four numbers a,, g,, @, and g, 80 that the four equations (I) and (V1) are satisfied.

The rest s elementary algebra, Of course not every set of four equations in four
unknowns has a solution; and in some cases there may be many solutioas., But in the
present case we quickly obtain a unique solution, Indeed the first equation of (V1) gives
a, " -:1; immediately, and then using this in the next equation we get a, = }f Now com -
bining the last equation of (VI) with equation (I) we get a, = 0; and finally, using these

values of a,, @,, and a,, we find from (I) that a, = %
Thus we have found and established, by methematical induction, that

’ 3, a8 3 s o 1,21
P +2°+3%+ ,..v k -%k +2k +sb
for every positive integer %,
Of course no trie 1 1ematician will be willing to leave the subject at this point,
We have f Cio~m '~ jor the sum of the {irst k positive integers, for the sum of the
first 7 _...es, and for the sum of the first k cubes .., . What akout higher powers?
It does not take -uch imagination to guess, on the basis of our experience so far,
that i* . . wny positive integer, the sum of the first k nth powers can be expressed as
. polynomial in k of degree n + 1, That is, U

PR R I L

we wish to asecertain whether there exist rational numbers bn+y, bny Bnmiyvvsy Byy By
such that Zn = bno K™Y + bpk® + ...+ bk + by for all positive integers &,

That this 1s indeed so can be shovm by means of mathematical induction, treating the
problem along the lines shown above for the cage n = 2, U you carry through the de-
tails you will find that the problem is reduced to showing that a certain set of »n + 2
equations in the n + 2 letters by, by, vvyy by, b hes a solution, and the form of
these cquations will then permit a siniple argument showing the existence of a unique
solution. Tn order to set up this system of equations you will noed to know that any
term of the form (j+1)P can be cxpressed as & polynomial in j of degree p, with first
and last coefficients equal to 1i

Pt + o

(j+1)P = jP + ¢ 9_!'11"" R YRS T

prt
Probably this s well known to you; but in any case it can easily be established itself by
mathematical induction,

While to prove that the numbers bpsy, by, .00, b €80 b2 obtained as golutions of a
system of simultaneous linear equations is net too difficull, it is somewhat harder
problem to find explicit formulas for bpyay,, ., by Whieh will enable us to compute
their numerical values in any specific cage, In order to de so, it is first necessary to
find explicit formulas for the numbers ey.i,,.,, 6, Which enter into the formula for
(j+1)P. As it happens, however, the latter numbers (under the name binawial coeffi-
cients) have been very thoroughly studied by mathematicians, and the desired explicit
formulas are known, In fact we haye

T (pei) forany = p=1, pe2,001, 1,

where in general the notation ¢! stands for the produet ¢ '(g-1) ' (¢-8) ' ,,, *8 21
To establish these formulas for the binomisl coefflcients one ean agaln use mathemati-
cal induction; the reader who tries this will find it eonvenient to place the subscript p
on those binomial coefficients which appear in the expanslon of (j + 1P,

* * ¥ ¥ ¥
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€. In our talk we have spoken of an axiom system for the theory of positive integers,
such as Peano’s, in which the principle of mathematical induction is taken a8 one of the
axioms. It may be of interest to see what a complete set of axioms of this kind looks
like, Here ls one involving only four axfoms,

Axiom 1, For every positive integer x, we have v + 1 # 1,

Axiom 2, U x-and y are any positive integers which are distinct (1.8., ¥ #y), then
also the numbers x + 1 # y + 1,

Axiom 3, For any positive integers ¥ and y we have (x + 3 + 1= x + (y + 1),
Axiom 4. Mathewmatical Induction,

On the basis of these four axioms all of the fundamental theorems of arithmetic can
be establislied., Consider, for example, the associative law of addition, which states
that for any positive integers x, y, and z we have (x+y) + z = ¥ + (y+2). In order to
obtain a proof of this by mathematical induction (Axiom 4), we begin by picking any pair
of positive integers, ¥ and y, and we then form the set G of all those positive integers z
for which in fact we do have (¥+y) + 2 = x + (y+z). We then proceed to show that
(i) the number 1 is in G, and (ii) G {8 inductive — in both cases making use of Axiom 3,
With (i) and (ii) esiablished we apply Axiom 4 to conelude that every positive Integer s
in G and this gives the desired result,

The reader should caryy through the detalls of this proof, And he may then atterpt
in a similar way to establish the commutative law of addition, whicl-states that for any
positive integers ¥ and y wehave ¥ + y =y + &,

The full development of the theory of positive integers on the Lasis of Axioms 1 - 4
requires us to bring into the theory, hy definition, such concepts as the relation Jess
than, or the operation mulfiplication, which do not appear in the axioms themselves.
The interested reader may discover how this can be done by consulting a book such as
Fourdations of Analysis by Tdmund Landau, (Cheleea Publishing Company, New York,
1951).

* ¥ ¥ ¥ ¥

D, In each of the applications of mathematical {nduction which we have so far con-
sidered our aim hus been to establish some proposition which could be expressed by
means of an equation, Howeyer, there 18 no necensury connection between equations
and mathemetical induction, and the latter ean equally well he applied to cctablish
propositions expressed by means of inequations (or inequalities, as they arve often
called). Below we illustrate this possibility,

Consider the first few successive powers of 81 8'= 2, 2% = 4, 2% = §, 2' = 18,
Clearly we have 2K > & for k =1, 2, §, 4, and it seems quite Jikely that this ineguation
will continue to hold for larger values of b, Using mathematical induction It is a slm-
ple matter to give a rigorous proof that 2% > b for every positive integer #, We
simply form the set (G of fhose pumbers & for which we do have 2% > &; we already
know that 1 (as well as 2, 3, and 4) are In G; and it remelns only to show that @ is
inductive, o do this, we pick any number from G--enll It j —so0 that we know 21 > j,
Since 27" =21.2' = 20 + 2], we get 8%t = 2] + @) >4 + 2); and sinee 2) > 1this
gives 2)'" > j+1, Thus j+1 is in G (as we see by reference Lo eur definition of the
sel G); and since j was any number picked frem @, the fact that we have shawn j+1 to
be in G demonstrales thal G is inductive, As neted ahove, this enahles us to conelude,
by mathematical induction, that 2% > & for every positive integer &,

Now let us look briefly at certuln elasely related inequalities, We shall discover an
interesting extension of mathematical induetion, B8 well as lervn a fupdamental fact
about the rapidity with which the exponential funetion grows,

Instead of comparing values of 2% with & itself, let us compare 8% with &°. A
table for the first four values of & logks us follows,
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The relation between 2% and &” appears very different from that between 2k and k:
Whereas 2k > & for all values of &, we find in our table that we have 2k > k* for one
value of &, 2% = k* for two values of &, and 2% < &* for one value of k, There does
not seem to be any general law here,.

But let us continue the table a little further.

k |] gk k®
5 32 25
6 64 38
7 128 49
8 256 84

Well —1in this part of the table we have 2% % % for all four values of & listed!

Furthermore, as we proceed down the table the difference between 2% and k* in-
creases, and thig may serve to give us the feeling that in fact we will find 2h > & for
all values of b= 6, This is, In fact, correct, But how do we prove it?

“)y methematical indaction,” you will probably say, For after all, {his 7s a paper
on mathernatical induction, And yet there {8 an obvious diffieulty In applying mathe.
matical industion —at least f we try to apply it in the obvious way. For if we forin the
sel G consisting of those numbers & for which we do have 2% > &', we find that G is
wol inductive. This can be seen from our little table above which shows that 1 is in G
bt that 141 (i.e., 2) isnot in G, Eince G is not inductive, we cannot apply mathemati.
eal) induction to it.

The difficully here is that as we have defined our set G il contains numbers lass
than 5, aud so involves the early part of the table of values of 2% _which we have come
{0 Lelieve is exceptional. We might, thercfore, consider instead of G the set I of
fhose weinbors bowhich ave greater than or equal to 5 and for which we do have P L
and we mizht reasonably hope te show that this set A is inductive. Dut then a new dil-
ficulty arlecs. For we do not kave 1 in this set H —und hence we ciaunoat apply mathe-
matical induetion to it.

There is @ way of curmounting this diffieulty, But rather than carry it out for our
porticular problem it will be worth our while to show that the same sorl of difficulty
can ba overcome in o large number of ¢ases. We do this by extending our fundamental
Jaw of mathematical induction,

EXTENDED PRINCIPLE OF MATHEMATICAL INDUCTION, Suppose that p is a
positine infeier, and hal H is any sel of numbere eoncerning whick we know thal

(i) the numbey p is in H, and
(it) Ir is inductive.

Then we wust have k in H for every pegitive tnteger k & p,

We may notice that the extended prineiple appears to be stronger than our original
formuletion of mathematical induction sinee we can obtain the latler as a special case
of the extended principle by taking p to be 1, In spite of this we can prove the extended
principle by wsing the original law — in the following way,

Suppose that p is a positive integer, and that M is a set which salisfies the hypoth-
esis (i) and (ii) of the extendéd principle, We wish to show that for any positive integer
k = p we must have & in H.
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To do this we form a new set of numbers, G, by taking as its elements all the num-
bers In H as well as all positive integers < p (some of which may happen to be In H).
Concerning this new set G we can show two things.

(a) The number 1 is in G, For i p 1s 1, then by (1) we have 1 In H and so also 1
is in G by construction. On the other hand if p is a positive integer other than 1, then
of course we have 1 < p and 80 again 1 gualifies as an element of G —this time as
one of the second kind of elements to be put into G.

(b) The set G is inductive. We see this by choosing any element from G --call it j
—and showing that the number j+1 must also be in G. If § happens to be in H, then —
by hypothesis (ii) - j+1 will also be in H, and so j+1 will be one of the first kind of
elements put into G, On the other hand if § is nof in H, then (since ; was chosen
from G) it must be one of the second kind of elements put into G —that is, j must be a
positive integer which is < p, Now U j happens to bo just one less than p, that is, if
j =p-1, then j+1 = p and so j+1 is in A (by hypothesis (1)) and so j+1 is in G, But
if j is more than one less than /), that is, if § < p.], then j+1 < p and so again j+1
qualifics as an element of G (this time one of the second kind). Thus in every case j+1
s shown to be in G, and this completes the demonstration that ¢ is inductive,

Now combining (a) and (b) we conclude, by the original law of mathematical induc-
tion, that every positive integeyr is in the set G, By referring to our definition of the
set G we see that this means that every positive integey is ¢ither an element of H or
clse is < p. Dut then if & is any positive Integer = p we must have & in I, This is
the d2sired conclusion of the extended principle — whose proof is thus completed,

Having ectablished the extended principle of mathematical induetion, let us seek to
apply it to the problem we were considering, We are seeking to show that 2k > &? for
every positive integer # = 5. We have formed the set 7 conslsting of all those posi -
tive integers k which ave = § and for which we do have 25 > k*, We already know,
{row cur ti-blc, that the number 5 is in this set B, 1If, now, we could show that /1 were
inductive, then the extended principle would apply to assure us that cvery positive inte-
ger = § ie in X7, and this would establish our proporition,

So let un seck to show that B s Inductive. We pick an arbitrary clement fromw H —
call it j —sothat j s a positive integer = 5, and 21 > j’._ Of course j+1 will also
be a positive integer = 5, and we would lke to know that 2(i*2) > (J+1)Y" (for this
viould ailow us to conclude that j+1 is in H, and hence that # 18 inductive),

Row how can we reason from the facts that § 2 5 and 2J > j7 to the desired con-
clusion that 2U"Y > (j+1)° 7 we know, of couree, that 2f1f*) = 252" = 2 4+ 2] and
(i41)" = j° + (2j+1). Thus we would like to establish that 2) + 2J > 4% + (2i+1), Us-
ing owr knowledge that 2! > j* we can establish that 23 + 25 > J* + §* | Thus our
work wouid be completed if we could show that §° 4j+1,

Of course it is not true that for every positive integer ¢ we have i* > 2; 1, as we
cee by considering the case 7 = 1. But remembey that we know that our integer j must
be = 5. Could it be that for every Intoger j @ 5 we have j* > 25417 By trylng @ few
speeial valves for j say j = §, 6, 7, it seems rather likely that this is so. Bul how do
vie prove 1W? By the extended principle of mathematieal induction, of coursicl

Thus it appears that in order to complete the proof that 2% > &% for cvery positive
integer £ = § by the extended principle, we-must firsl prove that j° > 2j+1 for every
positive liuteger j = 5 —again by using the exlended principle, Put this latter task i a
straightforward maiter, and we shall leave the details to the Interested reader,

Well then, we know that 2™ > & for every positive integer # aud that 2% > »? for
every & = 5. Do any generalizations 5uggguat themselves to your mathematicil intu-
itlon? Whal about the inequality gk 5 k"7 Ou the basis of our earlicr experlence we
might expect that it does not hold for e/l positive Iptegrers &, but that it 1may held for all
swficiently lurpe k, 1.e,, that we can find & eertaln number ¢ such that 25 > 4* for
every positive integer b which is # ¢, If we nre more daring, we may even conjecture
that something similar is true for each of the inequalities 2% > B, 2k > 4 , ete, Let
us formulate this general proposition explicitly,
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CONJECTURE. Given any positive integer n, we can find a positive integer q such
that 2% > k™ for every positive inleger k = q.

It happens that this proposition is correct. In general, the larger the value of the
given integer n, the larger we will have to take q. That is, if n is very large we have
to go very far out in the sequence of positive integers before we get to values of %
where 2K becomes and remains > &n,

By direct computation we can find a suitable value of ¢, and then employ the ex-
tended principle of mathematical induction to show that 2k > k* whenever k is equal
to or exceeds this value of ¢. This task should be quite feasible for most readers —
albeit a fair amount of effort will be required. However, to establish the conjecture in
its full generality is a much more difficult task, and we therefore supply a few hints for
the enterprising reader who wishes to tackle it.

It will be useful first for such a reader to establish two preliminary results, which
we may call lemmas.

Lemma 1. For every positive integer n we have 2"*! > n’+n,
Lemma 2. I j = 2" then 2= (j+1)".

With these results at hand one can employ the extended principle of mathematical
induction to show that our conjecture will be true if we take ¢ = 2™*' |.e,, to show that
25X > k" for all integers & = 27, The pattern of the proof follows.that which we
gave for the case n = 2 above.

To prove Lemma 1 we may use mathematical induction (in its original form). To
prove Lemma 2 it is best to proceed as follows.

We recall from Section B of this Appendix that there are numbers ¢, ,...,cq-,

(the so-called binomial coefficients) for which the equation

(D) = e, ™ 4L ket

holds identically (i.e., for all numbers j ). By considering the case j = 1 we see that
the sum of the coefficients on the right side of this equatioy, 1 + Copr v+ 6 + 14,
has the value 27 so that when j = 2" certainly j must exceed eacli of these coeffi-

cients. Lemma 2 then follows dircctly from the obscrvation that if we have any poly -

nomial @ j" + @, _J™"' + .., + a,j + @&, then we must have
(+%) (@ YT E @t e, 0 e L., 4 a,] 4 ay)
for every value of j which exceeds each of the coefficients a@,,...,a,.,. This obser-

vation, in turn, is establithed by an inductive proof involving the et G of those nuin-
bers n for which the inequality (++) holds whenever j exceeds each of the coefficients
aﬂ ’ aTl" Lo

Tho;,c who are able to carry through all of these details successfully may wish to
try their band at proving the following strengthened formn of the conjecture: Let » be
any positive mtegex then given any positive integer n, we can find a positive integer ¢

such that (1+ —) > k"™ for every positive integer & = g. Clearly the original conjec-
ture is a special case (as we see by taking » = 1).
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PROBLEMS

Throughout the Appendix we have mentioned problems whose solution can be effected
by the use of mathematical induction. Below we collect them in a list for ready refer-
ence, and then add a few others from various domains of mathematics. Letters before
the problem numbers indicate the section of the Appendix from which the problems
come; new problems are numbered but not lettered.

Al. Show that if x and y are positive integers such that x >y, then x* - y ks
divisible by ¥ - y for every positive integer k.

A2. Show that if x and y are any positive integers, and if % is any odd positive in-
teger, then x* + yk is divisible by x + y,

Bl. Show that for each positive integer p, there are p numbers CLsenns Cp such
that the equation
(F+ )P =cpjP+...4¢ej +1

holds identically (i.e., for all numbers j). In fact, show that if i is any of the numbers
1, ..., p then

p!
T

Here the notation ¢! (read g-factorial) stands for the number ¢ - (g -71) (¢ -2 -
<. "3+ 21 obtained by multiplying together all of the positive integers = g,

B2. Show that given any positive integer n we can find n+2 rational numbers b,
«er,bny, such that the equation

1" 8% % s ¢ PP n B ™ L B 6 L., 4 bk +b,
holds for all positive integers £, In fact, using the formulas given in Bl one can show
1 1
that b,,, = oy and b, = PE Try to find formulas for the other numbers b
vy Dl

n=1? bn-z ’

Cl. Using Axioms 1-4 for'the theory of positive integers, as given in the Appendix
Part C, prove that (x+y) + z = x + (y+z) for any positive integers x, y, 2.

]

C2. Show that the same Axioms 1-4 imply that x + ¥ = ¥ + x for any positive in-
tegers x, .

; Dl.a Find the smallest integer ¢ such that, for every positive integer £ = ¢,
2% S e y

nzr.msmw that if #» is any positive integer then 2¥ > £® for all positive integere
k=D i

D3. Generalize the statement in D2 by showing that, given any positive integers n
: k
and 7, one can find an integer q such that (1 + 5—) > k" for all positive intcpers
k=g,
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1. Suppose that n is any positive integer, and that f,, .. -»£n are n distinct lines
in a plane satisfying the following conditions: .

(i) No two of the lines are parallel;
(i) No more than two of the lines intersect in any one point.

Show that the n lnes divide the plane into exactly (% n' + -21- n + 1) different regions.

2. Suppose that » and % are positive integers, that B 5 wrag b, are distinct points
on the surface of a sphere, and that £.s... [k are distinct curved line Segments lying
on the surface of thig sphere, such that the following conditions are satisfied:

(i) Each of the given points is an end-point of one or more segments;
(ii) Each end-point of any of the given segments coincides with one of the given
points;
(ii1) No point of any of the given segments other than an end-point can coincide with
one of the given points or can lle on one of the other segments,

Show that if » is the number of regions into which the surface of the sphere is cut by
the network of given Scgments, then n - &k + » = 9. (T'wo points on the surface of the
sphere are said to be in the Same region in case they can be joined by a curved seg-
ment, lying in the surface of the sphere, which does not pass through any of the given
points or segments.) .

3. Using the facts that for any positive Integers » and & we have
n'=n  and  gkh =nk.p,
and using no other facts about exponentiation, show by mathematica) induction that foyr
all positive integers n, k, and i we have
akti o pk i and nkd = (nk)i,

4. Within the system of Axioms 1-4 given in the Appendix, Part C, show that if &
and y are any distinct positive integers (Le., if x # ¥), then for any positive integer z
wehave x + z £y + 2 (Notice that from this result, by an clementary law of logie,
there follows the well known cancellation law: whenever x + 2 =y +z we have x = ¥.)

5. Within the theory of Axioms 1.4 given in the Appendix, Part C, we introduce the
ordering relation < by the rule of definition:

x < y if and only if x + z = ¥ for son.e positive integer z.

Using this definition and the associative law for + (Problem C1), it is casy to show the
transitive law for < ; whenever x < y and ¥ < ¢ we must also have x < ¢, Using
mathematical induction, show in this theory that the trichotomy law holds for<: For
any positive integers x and ¥y, either x < yor x=yory < x. '

6. In Part D of the Appendix there ig given a statement and proof of the Exfended
Principle of Mathematical Induction, Give anollier proof of thisg exlended principle by
considering the set J of all those positive integers & such that % + b -1 isin n.

7. In addition to the extended principle discussed in Part D of the Appoendix, there
is anotheyr generalization of mathematical induction which is often very useful. In order
to formulate this, we first specify that a set & of positive integers is to be called
weakly inductive if, whenever we pick a number from K such thal every smalley posi.
tive integey is also in K, then the number obtained by adding 1 to the chosen humber
Will also be in K. Now we can state the

Principle of Strong Induction: 1 K is any set of positive integers such thut
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(a) the number 1 is in K, and
(b) K is weakly inductive,

then every positive integer must be in K,

Prove this Principle of Strong Induction using ordinary mathematical induction.
Suggestion: Being given a set K which satisfies the hypotheses (a) and (b) above, con-
sider the set G of all those numbers j such that j, as well as every posilive inleger
less than j, is in K.

8. A positive integer is called prime if it 1s greater than 1 and is not divisible by
any positive integer except 1 and itself. Using strong induction, as formulated in the
preceding problem, show that every positive integer either is 1, or else is a product of
one or more prime numbers. :

9. Let s and %k be positive integers. Show that given any positive integer n we
k
can find another positive integer m such that (s + ’—:;) -8k L ;1; (This proposition

is closely related to the fact that the operation of raising 2 number to the k-th power is
a continuous opzration.) d

10. Let s and k be positive integers. Show that given any positive integer n we
can find another positive integer m such that

b ¥ k
R SR i .

- ksk-l < ol
n

1
m

(This proposition is closely related to a fundamental result of differential calculus.)
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